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Abstract

The denaturation dynamics of a long double-stranded DNA is studied by means
of a model of the Poland–Scheraga type. We note that the linking of the two
strands is a locally conserved quantity; hence, we introduce local updates that
respect this symmetry. Linking dissipation via untwist is allowed only at the
two ends of the double strand. The result is slow denaturation characterized
by two timescales that depend on the chain length L. In a regime up to a first
characteristic time τ1 ∼ L2.15, the chain embodies an increasing number of
small bubbles. Then, in a second regime, bubbles coalesce and form entropic
barriers that effectively trap residual double-stranded segments within the chain,
slowing down the relaxation to fully molten configurations, which takes place
at τ2 ∼ L3. This scenario is different from the picture in which the helical
constraints are neglected.

PACS numbers: 87.14.gk, 87.15.H−, 61.25.hp, 36.20.−r

(Some figures in this article are in colour only in the electronic version)

The Watson–Crick helix is a typical form of a DNA in the cell [1]. In the laboratory, upon
heating DNA molecules in a solution, one obtains a helix–coil transition called denaturation.
For decades, DNA denaturation has attracted the attention of scientists because it can help
to understand important biological processes: for instance, the genetic code can be accessed
during transcription and replication by an opening of bubbles [1]. It is experimentally known
that the fraction of molten DNA increases for increasing temperature [2]. The first theoretical
description of denaturation that can account for this phenomenon was a simple model by
Poland and Scheraga (PS) [3]. A model of this kind is now behind software like Meltsim [4],
predicting sequence-dependent melting curves, which can then be compared with experiments.
Another simple model for the DNA is due to Peyrard and Bishop (PB) [5, 6]. Also, some
more detailed yet mesoscopic models have been recently proposed [7, 8], allowing for the
numerical study of features that cannot be simulated in all-atoms molecular dynamics.
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PS models rarely take into account the topological state of a macromolecule. All polymers
that form closed rings have some conserved topological features, as long as the chains cannot
break and cross each other. For instance, in circular DNA, such as the genomes of some
bacteria, the number of times that the two strands twist around each other (linking number)
cannot change. If this constraint is included in a PS model, the thermodynamic denaturation
transition is essentially suppressed [9], unless supercoiling effects are considered [10]. The
topology is not fundamental for the equilibrium properties of linear polymers, but the fact
that chains cannot cross each other is clearly relevant for their dynamics. For instance, in
electrophoresis the dynamics of a DNA under an electric field depends on its continuous
entangling with the polymers of a gel [11]. This feature is taken into account in models of
electrophoresis [11], such as the Rubinstein–Duke ‘repton’ model [12–14].

While the equilibrium thermodynamics of a DNA has been largely investigated, the
dynamics of this macromolecule is of interest as well. The dynamics of thermal denaturation
has been studied by means of PS and similar models [15–18], by using the PB model [6],
and in more detailed models [7, 8]. For short DNA segments, the rates of opening found in
experiments [19] can be estimated by PS models with stochastic dynamics [17]. However,
being a coarse grained description, the PS model is particularly useful to study long chains.

The aim of this paper is the study of the denaturation dynamics of a long DNA in a PS
model with a stochastic evolution that takes into account the helical structure of the double
strand. This was not explicitly included in the standard formulation of the PS model [15, 16].
We show that a dynamics with local preservation of the linking between the chains yields
a new scenario, with two timescales. The first regime is dominated by denatured bubbles
diffusing into the chain from its ends (where the double chain can freely untwist). This regime
ends after a time lapse that scales approximately as the square of the chain length, where the
number of bubbles reaches a maximum. Then bubbles start to coalesce, with those near the
chain ends that form entropic barriers trapping the helical domains still in excess. Trapping
into these metastable states further slows down the denaturation process in the model, leading
to thermally equilibrated denaturation only after a second timescale, which grows as the cube
of the chain length.

In the PS model, each strand is represented by a chain of length L, where a site i
(1 � i � L) stands for a local portion of the DNA. We associate each site with a segment
of ten base pairs, which thus represents a complete helical turn when paired4. The state of
the chain is stored in a Boolean array σi , where σi = 1 if the two segments at index i are
paired and σi = 0 otherwise (see figure 1(a)). DNA conformation is thus represented by an
alternation of segments of paired bases (sequences of 1’s) and of open bubbles (sequences of
0’s). For every σi = 1, there is a binding energy ε = −1. At a temperature T, this corresponds
to a Boltzmann factor q = e−ε/T . Thus, a sequence of m paired bases brings a contribution qm

to the global weight W of the configuration. A bubble formed by two complementary strands
of length � instead has an entropic contribution accounting for all the possible conformations
of a walk of length 2�: if s is the entropy per step of a walk, the constraint to form a loop
yields a weight Bs2��−c, where B is a constant factor. The exponent c can be deduced from
self-avoiding walks statistics: with the excluded volume between the chains being fully taken
into account [20], it is c ≈ 2.1. Hence, the weight of a whole configuration is

W = (qm1)
(
Bs2�1�−c

1

)
. . . (qmν )

(
Bs2�ν �−c

ν

)
(qmν+1), (1)

where ν is the number of bubbles. We also set σ0 = σL+1 = 1, namely each end of a single
strand is joined to the corresponding end of the other strand (no Y-fork is formed). Thus,

4 Note that this choice of coarse graining is not fundamental, as we are just interested in the scaling properties of
long chains and not in the microscopic details of the dynamics.
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Figure 1. (a) Sketch of a DNA configuration and of the relative array σ . (b) Configuration obtained
by updating (a) with (2) at site i. (c) Configuration obtained by updating (a) with (3) at the same
site: in this case, there is local conservation of the linking number.

at high T the equilibrium configuration is a ring of length 2(L + 1). At low T, on the other
hand, typically one finds long double-stranded parts separated by small bubbles. According
to this description, the properties of the model at thermodynamic equilibrium can be derived
analytically [3, 20].

The simplest dynamical rules that can be assigned to the PS model involve moves where
locally one σi changes,

σi = 1 ←→ σi = 0. (2)

A Metropolis criterion can then be used to choose whether to accept the move. This kind
of update resembles the dynamics of adsorption of a polymer onto a wall; see figures 1(a),
(b). However, for 1 � i � L, we note that the (dis)appearance of ‘1’ would imply either
temporary breaking of one of the chains to (un)twist the two strands there (as it happens, e.g.,
with topoisomerase enzymes [21]) or a global rotation of 2π of the whole part <i of the chain
with respect to the whole part >i. The latter case is not in agreement with the idea of a small
time step that is intrinsic in (2). Since the update (2) neglects the helix (and the consequent
link) of the DNA strands, one needs another dynamics that respects the local topology of
dsDNA.

In order to preserve locally the linking number, we adopt a different basic move: one
picks a boundary (i|i + 1) at random and swaps the relative variables,

σi = x, σi+1 = y −→ σi = y, σi+1 = x, (3)

where x and y can be 0 or 1 (if they are equal, the move is trivially the identity). This
exchanges the amount of linking of the chains at position i with that at position i + 1; see the
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sketch in figure 1(c). In practice, the linking here plays the role of an order parameter that
is locally conserved. In order to have evolution of the global linking number, however, one
has to also consider some dissipation via untwisting of the double helix. In fact, untwisting
with an update like (2) should be valid close to the ends of the dsDNA macromolecule, if they
are free to rotate. Two special updates are then introduced by adding to the list of possible
boundaries the (0|1) and the (L|L + 1) ones:

σ1 → 1 − σ1 if (0|1) is chosen (4)

σL → 1 − σL if (L|L + 1) is chosen. (5)

These two moves can thus change the energy E = ∑
i σi of the chain, allowing equilibration

at every temperature. It is important to note that the move (3) can lead to the nucleation
of new bubbles along the whole chain, from the boundaries of already present ones (e.g.,
σ = . . . 00001111 . . . → σ = . . . 00010111 . . .). The dynamics obeys detailed balance;
hence, the reverse process of bubble coalescence can also clearly take place. Therefore,
move (3) seems the best approximation for the purpose of describing the local conservation
of the linking between two complementary DNA chains. By definition, this model cannot
deal with the formation of twisted bubbles, for example by means of breaking of base–pair
bonds without untwisting the chain. These configurations, however, are entropically unfavored
compared to those in which the twist is concentrated on paired segments and open bubbles
are expanded. We thus expect that the approximation of neglecting the formation of twisted
bubbles is appropriate in a simple model.

A time step consists in a sequence of L realizations of a basic move, each one with i
picked at random, uniformly along the chain. If the dynamics (3)–(5) is used, i ∈ [0, L],
while i ∈ [1, L] for update (2). Then, according to the Metropolis criterion each move is
accepted with probability p = min{1,Wnew/Wold}, where Wnew is the weight of the proposed
configuration and Wold is the weight of the present configuration.

The protocol on which we focus is a quench of a system equilibrated at low T to a regime
at very high T. This is indeed the regime that allows us to appreciate more the effects of
the new physical ingredients in this model. Equilibrated configurations to start the protocol
are generated by setting q/s2 = 100 and by applying multiple (2) updates5 (this is because
they equilibrate faster than (3)). Then, each protocol starts by switching instantaneously to
q/s2 = 0.01 at time t = 0. We set the parameter B = 1, postponing the systematic study of
different cases to future works. For the bubble exponent, we use the value c = 2.14 [22].

The transient to the new equilibrium is monitored by studying the scaling properties of
two quantities: the number of denatured pairs δ ≡ ∑

i (1 − σi) and the number of bubbles
ν. The former is the quantity normally inferred from UV-absorption experiments [2] while ν

is useful for characterizing the state of the system. For convenience, data are binned in time
intervals with a constant size = log 1.05 in a log scale. Moreover, an average over at least
1000 trajectories is performed. Figure 2 shows δ and ν versus time in a log–log scale for
L = 500, both for a dynamics involving only move (2) and for the dynamics (3) introduced
in this paper. In the former case, fast denaturation takes place, at a timescale τ0 ≈ 1 that does
not scale with the system size L [16].

The dynamics (3)–(5) generates a richer picture. Two characteristic timescales have been
highlighted by vertical lines in figure 2. The process goes as follows: at high T, the rate
σ1 = 1 → σ1 = 0 is much higher than the rate of the opposite transition. The same is true
for site i = L. Thus, 0’s enter at the boundaries and diffuse toward the center of the chain.

5 Similar results can be obtained by starting from the fully ordered state, σi = 1 for all i.
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Figure 2. Log–log plot of the number of open sites δ (dense lines) and of the number of bubbles ν

(dashed lines) versus time, for L = 500. Data shown with thick lines are obtained with our update
(3)–(5), while thin lines (red) correspond to data obtained with update (2). The final state for both
dynamics is the equilibrium at high T, with δ ≈ L and ν ≈ 1. The dot-dashed line represents a
scaling ∼t1/2.
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Figure 3. (a) Number of bubbles as a function of time, for chain lengths L = 100, 200, 300,

400, 500, 600, 800 and 1000 (from bottom to top). (b) Number of open sites versus t, the same
notation.

This first regime6 is characterized by an increase of δ and ν that is slower than ∼t1/2, see
figure 2. A timescale τ1 is characterized by the maximum of the number of bubbles and it
marks the end of the first regime. At times t > τ1 one observes a second regime in which
δ continues to increase while ν decreases, which implies that bubbles coalesce. Finally,
equilibrium is reached at a time τ2, when δ ≈ L and ν ≈ 1.

Both τ1 and τ2 increase with the system size; see figure 3. We find that both timescales
are consistent with an algebraic dependence on L, i.e.

τ1 ∼ Lz1 , with z1 	 2.15 ± 0.10 (6)

τ2 ∼ Lz2 , with z2 	 3.0 ± 0.1. (7)

6 In this regime, we do not observe simple dynamical scaling for δ and ν.
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Figure 4. Curves rescaled to collapse at τ1 with z1 = 2.15 and at τ2 with z2 = 3; see the notation
of figure 3 and equations (6) and (7).

The peak of the ν plots is a particularly clear feature that helps to estimate the value of z1:
peaks are reached at τ1 	 0.04 ×L2.15. Moreover, around τ1 we achieve a data collapse of the
form ν/L versus t/Lz1 . Figure 4(a) shows that a critical density of bubbles ν(τ1)/L is reached
at τ1. The values of the critical density of bubbles, as a function of L−1/2 and extrapolated
for L → ∞, tend to 0.280(1). A similar collapse δ/Lαδ

1 versus t/Lz1 can be attained: the
exponent yielding the best rescaling is αδ

1 	 0.94; see figure 4(b).
Data collapses can be done also to determine τ2. At τ2 by definition we have the full

denaturation, i.e. δ(τ2) ∼ L. To estimate z2 	 3 we have in fact required that δ(t)/L → 1 for
t → τ2 (for all L’s for which τ2 could be reached by simulations), as shown in figure 4(d). A
data collapse of ν/Lαν

2 versus t/L3, with αν
2 = 0.8 (figure 4(c)), confirms that z2 	 3 is the

exponent characterizing the timescale τ2.
The first regime is essentially a diffusion of random walkers, σi = 0 entering from the

boundary, and one should expect a temporal domain scaling as the square of the system size.
Indeed, we estimate z1 = 2 for c = 0, a case in which the open sites are independent of each
other and the weight of a configuration just depends on δ. For c = 2.14 we instead estimate
the small deviation z1 	 2.15 from this classical result, probably due to the bubble weights.
The case c = 0 is also interesting because it does not display two different timescales but
only one. It confirms that the bubble interaction and coalescence is the process leading to that
second timescale.

It is possible to predict the value of z2 with a simple argument: in the regime between τ1

and τ2 two bubbles at the chain ends trap the double-stranded parts inside the system, preventing
a fast escape of σi = 1 from the boundaries. Let us concentrate on one of the two ends, say
i = 1, as shown in figure 5, where an exemplified escape of a double-stranded segment is
shown. Taking the length �2 of the forming loop on the right as a reaction coordinate, the free
energy F = − ln W has a profile like that shown in figure 5. It achieves a maximum at state
(c), where �2 = �1/2. The rate of escape from (a) to (e) is proportional to the barrier jump
rate, which is proportional to the ratio of the weights in (c) and (a), [(�1/2)−c]2/�−c

1 ∼ �−c
1 .

Hence, the time spent for this escape scales as (�1)
c. As this has to take place for all �1 up

to the system size, τ2 ∼ ∑L/2
�1≈1(�1)

c ∼ Lc+1, which would imply z2 = c + 1 	 3.14 if the
whole dynamics was as simple as that described. Of course, multiple pathways intersect and a
description only in terms of a single �1 might not be exhaustive. Nevertheless, this prediction
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Figure 5. Sketch of the exemplified process of escape of double-stranded segments. Snapshots of
some intermediate states and the corresponding free-energy profile (as a function of the length �2
of the growing loop) are shown.

is remarkably close to the value z2 	 3 obtained by data collapse, suggesting that this is the
main mechanism acting in the second regime.

Besides timescales, we also have a time dependence of the number of open bases δ that is
different from that predicted by previous models, where one can observe a linear increase of
δ with time [6, 15] or δ ∼ t3/4 [15], under conditions similar to those discussed in this paper
(initial state at low T, denaturation at high T, no external forces). In our model, on the other
hand, we observe that δ increases slower than the square root of time.

The fact that polymer chains cannot cross each other is at the basis of our version of the PS
model, but of course it is included in many other models, like the model of a polymer diffusing
into a gel by de Gennes [23], in which he found that the diffusion constant scales as 1/L2.
Furthermore, in simulations of polymers in dense melts [24] one observes autocorrelation times
scaling as L3. These long timescales derived from the reptation dynamics of the polymers,
which have to diffuse into tubes formed by the melt. We argue that scenarios like this one
are similar to the phenomenon predicted by our DNA model, because the two twisted strands
constrain the stochastic movements of each other in space during melting.
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